TABLE OF CONTENTS

1. Introduction:
 1.1. Why DFT?
 1.2. Introduction to hardware testing
 1.3. Fault models
 1.4. DFT as part of the hardware design process
 1.5. Trends in DFT

2. DFT structures and methods
 2.1. Introduction
 2.2. Conventional test of a Printed Circuit Board
 2.3. Scan technology
 2.4. Boundary Scan Test (BST)
 2.5. Built-In Self Test (BIST)
 2.5.1. LFSR and MISR
 2.5.2. Memory BIST
 2.5.3. Logic BIST
 2.6. IDDQ
 2.7. Upcoming IEEE standards
 2.7.1. P1500: Standard for embedded core test
 2.7.2. P1149.6: AC Boundary Scan for advanced I/Os as High Data-rate differential links
 2.7.3. P1581: SCITT

3. The proposed control structure for DFT/BIST
 3.1. Background and motivation
 3.1.1. Why a new test access architecture is proposed
 3.1.2. Why BIST and not external test
 3.1.3. Why include an ETP?
 3.2. Complementary description to the research papers A-C.
 3.2.1. Basic description
 3.2.2. Implementation of test is influenced by the increasing complexity
 3.2.3. Interconnect test
 3.2.4. IP-level test
 3.2.5. Challenges and further work
 3.3. Experiences gained from paper D
 3.4. Related activities and work
 3.4.1. Related work addressing multiple TAP controllers
 3.4.2. Related work addressing Embedded Test Processor and I-IP
 3.4.3. Related work addressing IEEE 1149.1 based test access architecture
 3.4.4. Related work addressing non-IEEE 1149.1 based test access architectures
 3.4.5. Related work addressing BIST
 3.5. Comparison with other activities and work

4. Conclusions and discussions

5. Abbreviations and terminology
6. References

7. Appended papers
 7.1. Paper A:
 7.2. Paper B:
 7.3. Paper C:
 7.4. Paper D:

8. Not appended DFT related presentations and articles